Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01z603r0777
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKoel, Bruce E.-
dc.contributor.authorWatson, Olivia Agatha-
dc.date.accessioned2015-07-27T18:45:10Z-
dc.date.available2015-07-27T18:45:10Z-
dc.date.created2015-04-20-
dc.date.issued2015-07-27-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01z603r0777-
dc.description.abstractPhotoelectrochemical processes can facilitate the storage of solar energy in the form of chemical bonds via the water-splitting reaction: H\(_{2}\)O → ½ O\(_{2}\) + H\(_{2}\). Metal oxides and (oxy)hydroxides are known catalysts for oxygen evolution(OER) – the efficiency-limiting half-reaction of the solar-to-hydrogen energy conversion process. Similarly, metal oxides are also of interest as catalysts for the oxygen reduction reaction (ORR), specifically the 4-electron reduction pathway from O\(_{2}\) to H\(_{2}\)O for use in fuel cells. In this study, a series of gamma-MnO\(_{2}\) nanoparticles are synthesized, with varying amounts of Fe impurities introduced during the hydrothermal synthesis process. The efficiency of the nanoparticles as catalysts for oxygen evolution and oxygen reduction was studied via cyclic voltammetry in alkaline solution. Furthermore, a physiochemical study of the particles included characterization by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy(EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Analysis revealed that catalytic activity is related to crystallinity of each sample. Additionally, introduction of iron impurities caused in both the oxidation state and phase of manganese oxide.en_US
dc.format.extent52 pagesen_US
dc.language.isoen_USen_US
dc.titleInvestigation of Iron-Doped Manganese Oxide Nanoparticles as Electrocatalysts for Oxygen Oxidation and Reductionen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2015en_US
pu.departmentChemistryen_US
pu.pdf.coverpageSeniorThesisCoverPage-
Appears in Collections:Chemistry, 1926-2020

Files in This Item:
File SizeFormat 
PUTheses2015-Watson_Olivia_Agatha.pdf6.09 MBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.