Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01z603r073m
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBrynildsen, Mark P.en_US
dc.contributor.authorAmato, Stephanie M.en_US
dc.contributor.otherChemical and Biological Engineering Departmenten_US
dc.date.accessioned2015-06-18T19:03:29Z-
dc.date.available2017-06-18T08:05:04Z-
dc.date.issued2015en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01z603r073m-
dc.description.abstractPersisters are phenotypic variants present within bacterial populations that exhibit extreme tolerance toward antibiotic stress and are believed to be responsible for chronic and recurrent infections. Despite this clinical importance, the pathways responsible for persister formation during normal growth remain elusive. Therefore, we studied the role of a native stress, carbon source transitions, in persister formation for both planktonic and biofilm lifestyles upon exposure to two different classes of antibiotics, ofloxacin, a fluoroquinolone, and ampicillin, a β-lactam. Interestingly, we found that this single stress stimulates persister formation through numerous pathways leading to highly heterogeneous persister subpopulations. We discovered that carbon source transitions stimulated both ofloxacin and ampicillin persister formation, and data suggested that these persisters formed through largely distinct mechanisms. We first analyzed ofloxacin persister formation and reconstructed a molecular-level persister formation pathway from glucose exhaustion to a novel type of toxin-antitoxin (TA) module, the ppGpp biochemical network. We found that increased levels of ppGpp in conjunction with nucleoid-associated proteins are required mediators of the observed fluoroquinolone tolerance. Next, we examined how ampicillin persisters formed from the same metabolic stress and discovered that formation of ampicillin persisters required RelA and that loss of clpA, ssrA, or smpB eliminated persister formation through relaxation of the stringent response. Further, we found that tolerance to ampicillin was achieved through broad inhibition of peptidoglycan biosynthesis. ppGpp and trans-translation were found to be common mediators of both pathways whereas ClpA was unique for ampicillin persisters and nucleoid-associated proteins were unique for ofloxacin persisters. In addition, we found that carbon source transitions stimulated persister formation in biofilms, and ofloxacin persisters required ppGpp and nucleoid-associated proteins similarly to planktonic cultures. This work highlights the need to consider an antibiotic’s mode of action when analyzing persister formation pathways and demonstrates that individual stresses can produce persister heterogeneity. Knowledge of the common mediators responsible for persister formation from natural metabolic fluctuations, such as carbon source shifts, can be utilized as therapeutic targets to prevent persister formation. Combating persisters will expand and enhance the efficacy of our antibiotic arsenal in treating recalcitrant infections.en_US
dc.language.isoenen_US
dc.publisherPrinceton, NJ : Princeton Universityen_US
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the <a href=http://catalog.princeton.edu> library's main catalog </a>en_US
dc.subjectbacterial persistenceen_US
dc.subjectcarbon source transitionen_US
dc.subjectphenotypic heterogeneityen_US
dc.subjectstringent responseen_US
dc.subject.classificationChemical engineeringen_US
dc.subject.classificationMicrobiologyen_US
dc.titleUnraveling Mechanisms of Persister Formation during Normal Growthen_US
dc.typeAcademic dissertations (Ph.D.)en_US
pu.projectgrantnumber690-2143en_US
pu.embargo.terms2017-06-18en_US
Appears in Collections:Chemical and Biological Engineering

Files in This Item:
File Description SizeFormat 
Amato_princeton_0181D_11372.pdf9.24 MBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.