Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01xd07gs79z
Title: Measurement of Transcriptional Dynamics in Early Drosophila Development
Authors: Malcolm, Robert
Advisors: Gregor, Thomas
Contributors: Bialek, William
Department: Physics
Class Year: 2013
Abstract: Transcription of messenger RNA from DNA is a fundamentally stochastic process involving noisy interactions on the scale of single molecules. Most systems can be understood in terms of a two-state model of transcription in which a gene transitions between states of activity and inactivity, giving rise to "bursts" of transcriptional activity that increase output variability. We investigate transcriptional activation dynamics in the highly precise context of Drosophila embryogenesis using two-color smFISH measure transcriptional activation states and infer distributions of RNA polymerases along the gene. We find that transcriptional activation states of hb are compatible with the two-state model of transcriptional bursting, and we measure effective rate constants for these dynamics. Additionally, we find that the transcriptional activation states of sister chromatids of a single allele are uncorrelated, suggesting that stochasticity of gene expression is maintained on the level of single chromatids. We suggest a straightforward control that would provide independent verification of the approach undertaken in this work, and discuss possibilities for future experiments.
Extent: 35 pages
URI: http://arks.princeton.edu/ark:/88435/dsp01xd07gs79z
Access Restrictions: Walk-in Access. This thesis can only be viewed on computer terminals at the Mudd Manuscript Library.
Type of Material: Princeton University Senior Theses
Language: en_US
Appears in Collections:Physics, 1936-2020

Files in This Item:
File SizeFormat 
malcolm_robert.pdf10.41 MBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.