Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01x920g0628
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSarnak, Peter-
dc.contributor.authorde Courcy-Ireland, Matthew-
dc.contributor.otherMathematics Department-
dc.date.accessioned2018-10-09T21:07:52Z-
dc.date.available2018-10-09T21:07:52Z-
dc.date.issued2018-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01x920g0628-
dc.description.abstractWe study the monochromatic ensemble of random functions in the generality of a compact Riemannian manifold of any dimension. We prove equidistribution of local integrals at scales within a logarithmic factor of the optimal wave scale. On the two-dimensional sphere, we prove a limit theorem for the distribution of these integrals. We also study nodal domains, giving explicit (but embarrassing) lower bounds for the Nazarov-Sodin constant in dimension 2 and 3 and an estimate of the high-dimensional behaviour.-
dc.language.isoen-
dc.publisherPrinceton, NJ : Princeton University-
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog: <a href=http://catalog.princeton.edu> catalog.princeton.edu </a>-
dc.subject.classificationMathematics-
dc.titleFine-scale properties of random functions-
dc.typeAcademic dissertations (Ph.D.)-
pu.projectgrantnumber690-2143-
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
deCourcyIreland_princeton_0181D_12732.pdf711.19 kBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.