Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01x633f387p
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSkinner, Christopher-
dc.contributor.advisorCastella, Francesc-
dc.contributor.authorZanarella, Murilo-
dc.date.accessioned2019-07-26T12:31:48Z-
dc.date.available2019-07-26T12:31:48Z-
dc.date.created2019-05-03-
dc.date.issued2019-07-26-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01x633f387p-
dc.description.abstractWe upgrade Howard's divisibility toward Perrin-Riou's Heegner point Main Conjecture to an equality under some mild conditions. As in the recent result of Burungale, Castella and Kim, we do this by exploiting Wei Zhang's proof of the Kolyvagin conjecture but, unlike their result, we do not restrict ourselves to the case of analytic rank 1 over K. The main ingredient for this is an improvement of Howard's Kolyvagin system formalism. As another consequence of this improvement, we establish the equivalence between this main conjecture and the primitivity of the Kolyvagin system in certain cases, by also exploiting a explicit reciprocity law for Heegner points.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.titleOn Howard's main conjecture and the Heegner point Kolyvagin systemen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2019en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributor.authorid961168308-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File Description SizeFormat 
ZANARELLA-MURILO-THESIS.pdf497.75 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.