Please use this identifier to cite or link to this item:
http://arks.princeton.edu/ark:/88435/dsp01wh246v44x
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor | Caraiani, Ana | - |
dc.contributor.advisor | Bhargava, Manjul | - |
dc.contributor.author | Nogues, Isabelle Emmanuella | - |
dc.date.accessioned | 2015-06-15T14:40:38Z | - |
dc.date.available | 2015-06-15T14:40:38Z | - |
dc.date.created | 2015-05-04 | - |
dc.date.issued | 2015-06-15 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/dsp01wh246v44x | - |
dc.description.abstract | Let p be a prime, νp(x) the p-adic valuation of x, and {νp(f(n))}n≥0 a sequence in Qp generated by the function f : Zp → Qp. This paper examines the convergence properties of functions f(z) in Qp. We study the specific examples of linear recurrent sequences, generated by analytic p-adic functions, and the special factorial sequence of S ⊂ Z, {n!S}n≥0 defined by Bhargava. Here, S ⊂ Z is a union of congruence classes modulo p l. Instead of using standard analytic and algebraic arguments, we use the notion of p-regularity of {νp(f(n))}n≥0 to study the convergence properties of f(n) in Qp. To do so, we determine conditions on f(z) such that {νp(f(n))}n≥0 is p-regular. | en_US |
dc.format.extent | 46 pages | en_US |
dc.language.iso | en_US | en_US |
dc.title | From automata theory to number theory: p-regularity of p-adic valuations of number theoretic sequences | en_US |
dc.type | Princeton University Senior Theses | - |
pu.date.classyear | 2015 | en_US |
pu.department | Mathematics | en_US |
pu.pdf.coverpage | SeniorThesisCoverPage | - |
Appears in Collections: | Mathematics, 1934-2020 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
PUTheses2015-Nogues_Isabelle_Emmanuella.pdf | 425.28 kB | Adobe PDF | Request a copy |
Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.