Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01wh246v44x
Full metadata record
DC FieldValueLanguage
dc.contributorCaraiani, Ana-
dc.contributor.advisorBhargava, Manjul-
dc.contributor.authorNogues, Isabelle Emmanuella-
dc.date.accessioned2015-06-15T14:40:38Z-
dc.date.available2015-06-15T14:40:38Z-
dc.date.created2015-05-04-
dc.date.issued2015-06-15-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01wh246v44x-
dc.description.abstractLet p be a prime, νp(x) the p-adic valuation of x, and {νp(f(n))}n≥0 a sequence in Qp generated by the function f : Zp → Qp. This paper examines the convergence properties of functions f(z) in Qp. We study the specific examples of linear recurrent sequences, generated by analytic p-adic functions, and the special factorial sequence of S ⊂ Z, {n!S}n≥0 defined by Bhargava. Here, S ⊂ Z is a union of congruence classes modulo p l. Instead of using standard analytic and algebraic arguments, we use the notion of p-regularity of {νp(f(n))}n≥0 to study the convergence properties of f(n) in Qp. To do so, we determine conditions on f(z) such that {νp(f(n))}n≥0 is p-regular.en_US
dc.format.extent46 pagesen_US
dc.language.isoen_USen_US
dc.titleFrom automata theory to number theory: p-regularity of p-adic valuations of number theoretic sequencesen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2015en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File SizeFormat 
PUTheses2015-Nogues_Isabelle_Emmanuella.pdf425.28 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.