Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01sq87bw92d
Full metadata record
DC FieldValueLanguage
dc.contributorStein, Elias-
dc.contributor.advisorIonescu, Alexander-
dc.contributor.authorSardarli, Mariya-
dc.date.accessioned2015-06-15T14:09:36Z-
dc.date.available2015-06-15T14:09:36Z-
dc.date.created2015-05-04-
dc.date.issued2015-06-15-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01sq87bw92d-
dc.description.abstractThe aim of this thesis is to provide an introduction to the relationship between homogeneous distributions and the Fourier transform. We review the properties of isotropic dilations and demonstrates how they may be extended to non-isotropic dilations (x1, . . . , xd) 7→ (a α1 x1, . . . , aαd xd) with positive exponents αj . In the last chapter we drop the positive exponent condition in the dilation and explore the dilation (x1, x2) 7→ (ax1, a−1x2).en_US
dc.format.extent33 pagesen_US
dc.language.isoen_USen_US
dc.titleOn Homogeneous Distributions and Non-isotropic Dilationsen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2015en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File SizeFormat 
PUTheses2015-Sardarli_Mariya.pdf578.24 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.