Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01qn59q683n
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFefferman, Charles-
dc.contributor.authorLiu, Stanford-
dc.date.accessioned2019-07-25T18:55:45Z-
dc.date.available2019-07-25T18:55:45Z-
dc.date.created2019-05-06-
dc.date.issued2019-07-25-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01qn59q683n-
dc.description.abstractWe will look at Beltrami flows with respect to weak solutions in the case of stationary Euler equations in R3. Given this weak Beltrami flow, we will look at showing the regulariry and Liouville property. We will show that given a specific decay property of the tangential portion of the velocity at infinity, then the solution is trivial. In doing so, we will show other relatations for the tangential and normal components of the weak solutions to the stationary Euler equations.en_US
dc.format.mimetypeapplication/pdf-
dc.language.isoenen_US
dc.titleThe Liouville Property and Regularity of Weak Beltrami Flowsen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2019en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributor.authorid960948181-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File Description SizeFormat 
LIU-STANFORD-THESIS.pdf261.41 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.