Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01pg15bh93t
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCohen, Jonathan
dc.contributor.authorSinha, Ishan
dc.date.accessioned2020-10-01T21:26:21Z-
dc.date.available2020-10-01T21:26:21Z-
dc.date.created2020-05-12
dc.date.issued2020-10-01-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01pg15bh93t-
dc.description.abstractThe ability to extrapolate knowledge from familiar to novel domains is a defining feature of human intelligence. Contemporary neural network techniques, however, are primarily limited to interpolation among data in their training experience. In this work, we focus on neural networks’ capacity for arbitrary role-filler binding, the ability to associate abstract “roles” to context-specific “fillers,” which is a capacity that many have argued is an important mechanism underlying the ability to extrapolate. Using a simplified version of Raven’s Progressive Matrices, a hallmark test of human intelligence, we introduce a sequential formulation of a visual problem-solving task that requires this form of binding. Further, we introduce the Arbitrary Binding Network, a recurrent neural network model augmented with an external memory, and empirically demonstrate that it successfully learns the underlying abstract rule structure of our task and perfectly generalizes this rule structure to novel fillers.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.titleA Memory-Augmented Neural Network Model of Abstract Rule Learning
dc.typePrinceton University Senior Theses
pu.date.classyear2020
pu.departmentComputer Science
pu.pdf.coverpageSeniorThesisCoverPage
pu.contributor.authorid961190377
Appears in Collections:Computer Science, 1988-2020

Files in This Item:
File Description SizeFormat 
SINHA-ISHAN-THESIS.pdf5.41 MBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.