Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01m900nx05d
Full metadata record
DC FieldValueLanguage
dc.contributorChudnovsky, Maria-
dc.contributor.advisorLiu, Chun-Hung-
dc.contributor.authorTao, Andrew-
dc.date.accessioned2017-07-26T14:55:40Z-
dc.date.available2017-07-26T14:55:40Z-
dc.date.created2017-06-04-
dc.date.issued2017-6-4-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01m900nx05d-
dc.description.abstractIn this paper, we give a strengthening of the 1-2-3 conjecture by restricting all edge lists to be arithmetic progressions. We consider list assignments that take every vertex to a single integer and every edge to an arithmetic progression of integers. We prove that for every graph G with such a list assignment and edge lists have length at least 30(3^(2c(G))), then there exists a proper L-total weighting of G.en_US
dc.language.isoen_USen_US
dc.title(1,k)-Choosability of Graphs with Edge Lists Containing Arithmetic Progressionsen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2017en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributorid510101420-
pu.contributor.authorid960888096-
pu.contributor.advisorid961111778-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File SizeFormat 
Tao_Andrew_-_Thesis_Final_1.pdf280.3 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.