Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01j098zd81j
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTaylor, Richard L-
dc.contributor.authorPan, Lue-
dc.contributor.otherMathematics Department-
dc.date.accessioned2018-06-12T17:40:02Z-
dc.date.available2018-06-12T17:40:02Z-
dc.date.issued2018-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01j098zd81j-
dc.description.abstractIn this thesis, we prove new cases of Fontaine-Mazur conjecture on two-dimensional Galois representations over Q when the residual representation is reducible. Our approach is via a semi-simple local-global compatibility of the completed cohomology and a Taylor-Wiles patching argument for the completed homology in this case. As a key input, we also generalize works of Skinner-Wiles in the ordinary case.-
dc.language.isoen-
dc.publisherPrinceton, NJ : Princeton University-
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog: <a href=http://catalog.princeton.edu> catalog.princeton.edu </a>-
dc.subjectcompleted cohomology-
dc.subjectFontaine-Mazur conjecture-
dc.subjectGalois representation-
dc.subjectp-adic local Langlands-
dc.subject.classificationMathematics-
dc.titleThe Fontaine-Mazur conjecture in the residually reducible case-
dc.typeAcademic dissertations (Ph.D.)-
pu.projectgrantnumber690-2143-
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Pan_princeton_0181D_12614.pdf797.79 kBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.