Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01hx11xh55q
Full metadata record
DC FieldValueLanguage
dc.contributorHuh, June-
dc.contributor.advisorFulger, Auriel Mihai-
dc.contributor.authorJager, Conner Perry-
dc.date.accessioned2015-06-15T15:49:40Z-
dc.date.available2015-06-15T15:49:40Z-
dc.date.created2015-05-04-
dc.date.issued2015-06-15-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01hx11xh55q-
dc.description.abstractIn this paper, we solve two geometrically-motivated problems concerning vector bundles over projective varieties by using techniques from ordinary representation theory, modular representation theory, and combinatorics. We prove that (1) the k-th Chern character class of a vector bundle E over a smooth projective variety can be written as a rational combination of the k-th Chern classes of the family of vector bundles E⊕s ; and (2) every ample vector bundle has a globally generated tensor power in arbitrary characteristic.en_US
dc.format.extent40 pagesen_US
dc.language.isoen_USen_US
dc.titleRepresentation Theory and Vector Bundlesen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2015en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File SizeFormat 
PUTheses2015-Jager_Conner_Perry.pdf510.58 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.