Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01h989r584r
Full metadata record
DC FieldValueLanguage
dc.contributorLiu, Chun-Hung-
dc.contributor.advisorChudnovsky, Maria-
dc.contributor.authorZhang, Emily-
dc.date.accessioned2017-07-26T16:08:05Z-
dc.date.available2017-07-26T16:08:05Z-
dc.date.created2017-05-24-
dc.date.issued2017-5-24-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01h989r584r-
dc.description.abstractExcluding certain subgraphs H from non-3-colorable graphs results in classes of graphs that do or do not have bounded obstructions to coloring. In the positive case, we call those subgraphs H powerful. When the graphs are given a list function L with lists of size 2, we call such H 2-powerful. In this paper we classify all graphs as either 2-powerful or not. In particular, we use propagation paths to show in a simpler way that P\(_{5}\) and P\(_{2}\) + P\(_{3}\) are 2-powerful.en_US
dc.language.isoen_USen_US
dc.titleBounded obstructions for three-coloring graphs with lists size twoen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2017en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributorid961111778-
pu.contributor.authorid960862674-
pu.contributor.advisorid510101420-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File SizeFormat 
thesis6.pdf310.14 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.