Please use this identifier to cite or link to this item:
http://arks.princeton.edu/ark:/88435/dsp01g158bk68k
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Taylor, Richard | en_US |
dc.contributor.advisor | Bhargava, Manjul | en_US |
dc.contributor.author | Varma, Ila | en_US |
dc.contributor.other | Mathematics Department | en_US |
dc.date.accessioned | 2015-12-07T19:51:32Z | - |
dc.date.available | 2015-12-07T19:51:32Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/dsp01g158bk68k | - |
dc.description.abstract | We prove the compatibility of local and global Langlands correspondences for $\GL_n$ up to semisimplification for the Galois representations constructed by Harris-Lan-Taylor-Thorne and Scholze. More precisely, let $r_p(\pi)$ denote an $n$-dimensional $p$-adic representation of the Galois group of a CM field $F$ attached to a regular algebraic cuspidal automorphic representation $\pi$ of $\GL_n(\bA_F)$. We show that the restriction of $r_p(\pi)$ to the decomposition group of a place $v\nmid p$ of $F$ corresponds up to semisimplification to $\rec(\pi_v)$, the image of $\pi_v$ under the local Langlands correspondence. Furthermore, we can show that the monodromy of the associated Weil-Deligne representation of $\left.r_p(\pi)\right|_{\Gal_{F_v}}$ is `more nilpotent' than the monodromy of $\rec(\pi_v)$. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Princeton, NJ : Princeton University | en_US |
dc.relation.isformatof | The Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog: http://catalog.princeton.edu/ | en_US |
dc.subject | Galois representations | en_US |
dc.subject | Langlands program | en_US |
dc.subject | p-adic automorphic forms | en_US |
dc.subject.classification | Mathematics | en_US |
dc.title | On local-global compatibility for cuspidal regular algebraic automorphic representations of GLn | en_US |
dc.type | Academic dissertations (Ph.D.) | en_US |
pu.projectgrantnumber | 690-2143 | en_US |
Appears in Collections: | Mathematics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Varma_princeton_0181D_11540.pdf | 520.99 kB | Adobe PDF | View/Download |
Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.