Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01g158bk68k
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTaylor, Richarden_US
dc.contributor.advisorBhargava, Manjulen_US
dc.contributor.authorVarma, Ilaen_US
dc.contributor.otherMathematics Departmenten_US
dc.date.accessioned2015-12-07T19:51:32Z-
dc.date.available2015-12-07T19:51:32Z-
dc.date.issued2015en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01g158bk68k-
dc.description.abstractWe prove the compatibility of local and global Langlands correspondences for $\GL_n$ up to semisimplification for the Galois representations constructed by Harris-Lan-Taylor-Thorne and Scholze. More precisely, let $r_p(\pi)$ denote an $n$-dimensional $p$-adic representation of the Galois group of a CM field $F$ attached to a regular algebraic cuspidal automorphic representation $\pi$ of $\GL_n(\bA_F)$. We show that the restriction of $r_p(\pi)$ to the decomposition group of a place $v\nmid p$ of $F$ corresponds up to semisimplification to $\rec(\pi_v)$, the image of $\pi_v$ under the local Langlands correspondence. Furthermore, we can show that the monodromy of the associated Weil-Deligne representation of $\left.r_p(\pi)\right|_{\Gal_{F_v}}$ is `more nilpotent' than the monodromy of $\rec(\pi_v)$.en_US
dc.language.isoenen_US
dc.publisherPrinceton, NJ : Princeton Universityen_US
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog: http://catalog.princeton.edu/en_US
dc.subjectGalois representationsen_US
dc.subjectLanglands programen_US
dc.subjectp-adic automorphic formsen_US
dc.subject.classificationMathematicsen_US
dc.titleOn local-global compatibility for cuspidal regular algebraic automorphic representations of GLnen_US
dc.typeAcademic dissertations (Ph.D.)en_US
pu.projectgrantnumber690-2143en_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Varma_princeton_0181D_11540.pdf520.99 kBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.