Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01f4752k18d
Full metadata record
DC FieldValueLanguage
dc.contributorNaor, Asaf-
dc.contributor.advisorMarcus, Adam-
dc.contributor.authorReeves, Thomas Rowan-
dc.date.accessioned2016-07-12T13:34:42Z-
dc.date.available2016-07-12T13:34:42Z-
dc.date.created2016-05-02-
dc.date.issued2016-07-12-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01f4752k18d-
dc.description.abstractWe discuss techniques for Fourier analysis of Boolean functions. After an introduction to Boolean functions and their Fourier expansions, we discuss perhaps the simplest complexity measures of Boolean functions { sensitivity and influence. We turn to the question of nding restrictions on the Fourier coe cients of a Boolean function and derive an identity. Finally, we discuss the entropy-influence conjecture with a focus on useful generalizations of the problem, including generalizations of entropy and probability distribution. We propose a generalization of the Fourier basis using rotation matrices and derive an analogue of the Margulis-Russo Formula.en_US
dc.format.extent26 pages*
dc.language.isoen_USen_US
dc.titleTechniques for Analysis of Boolean Functionsen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2016en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File SizeFormat 
REEVES_Thomas_thesis.pdf277.74 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.