Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp019880vt394
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorOzsvath, Peter-
dc.contributor.advisorSzabo, Zoltan-
dc.contributor.authorTruong, Linh My-
dc.contributor.otherMathematics Department-
dc.date.accessioned2016-06-08T18:36:15Z-
dc.date.available2016-06-08T18:36:15Z-
dc.date.issued2016-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp019880vt394-
dc.description.abstractWe consider several applications of Heegaard Floer homology to the study of knot concordance. Using the techniques of bordered Heegaard Floer homology, we compute the concordance invariant $\tau$ for a family of satellite knots that generalizes Whitehead doubles. We also construct an integer lift $\tilde\epsilon$ of the concordance invariant $\epsilon$. We introduce an interpretation of $\tilde\epsilon$ in terms of a filtration on $\cfhat(S^3_N K)$ induced by a family of knots $\mu_n \subset S^3_N K$. Finally, we use truncated Heegaard Floer homology to construct a sequence of concordance invariants $\nu_n$ that generalizes previously known concordance invariants $\nu$, $\nu'$, and $\nu^+$.-
dc.language.isoen-
dc.publisherPrinceton, NJ : Princeton University-
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog: http://catalog.princeton.edu/-
dc.subjectheegaard floer homology-
dc.subjectknot concordance-
dc.subjectknot theory-
dc.subjectlow dimensional topology-
dc.subject.classificationMathematics-
dc.titleApplications of Heegaard Floer Homology to Knot Concordance-
dc.typeAcademic dissertations (Ph.D.)-
pu.projectgrantnumber690-2143-
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Truong_princeton_0181D_11790.pdf2.44 MBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.