Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp018s45qb99d
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorIonescu, Alexandru Den_US
dc.contributor.authorZhang, Yuen_US
dc.contributor.otherMathematics Departmenten_US
dc.date.accessioned2014-09-25T22:38:41Z-
dc.date.available2014-09-25T22:38:41Z-
dc.date.issued2014en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp018s45qb99d-
dc.description.abstractThis thesis mainly focuses on certain nonlinear dispersive equations where the classical Picard's fix-point argument fails in obtaining the desired local or global solutions. More specifically, Chapter two proves the local well-posedness of the KP-I initial value problem on the torus T^2 with initial data in the Besov space B^1_{2,1} through a short-time estimate approach. Chapter three constructs global solutions to a modified ionic Euler-Poisson system in two dimensions, given the initial data is small smooth irrotational perturbation of the constant background. The main ingredients in the proof is a quasi-linear I-method approach, along with the Fourier transform method analyzing its space-time resonance feature.en_US
dc.language.isoenen_US
dc.publisherPrinceton, NJ : Princeton Universityen_US
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the <a href=http://catalog.princeton.edu> library's main catalog </a>en_US
dc.subject.classificationMathematicsen_US
dc.titleOn the global solutions of quasilinear dispersive equationsen_US
dc.typeAcademic dissertations (Ph.D.)en_US
pu.projectgrantnumber690-2143en_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Zhang_princeton_0181D_11089.pdf477.97 kBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.