Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp017w62f842g
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPrud'homme, Robert K.-
dc.contributor.authorEdelstein, Jasmine-
dc.date.accessioned2014-07-29T19:22:10Z-
dc.date.available2014-07-29T19:22:10Z-
dc.date.created2014-04-14-
dc.date.issued2014-07-29-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp017w62f842g-
dc.description.abstractTargeted nanotherapeutics for cancer aim to preferentially deliver medicine to the tumor, increasing drug localization and reducing negative side effects. In this study, PSb- PEG nanoparticles were specifically targeted to epidermal growth factor receptors (EGFR), often overexpressed in cancer, using protein scaffold ligands known as Centyrins. Both maleimide-thiol and azide-alkyne conjugation chemistries were evaluated. Gel image analysis indicated similar conjugation efficiencies, but azide-alkyne chemistry is preferable for scale-up because it involves one less synthesis step, resists degradation over time, and requires less excess Centyrin to achieve high conjugation efficiency. Based on surface plasmon resonance, Centyrin-conjugated nanoparticles had 17-fold greater avidity for EGFR than free Centyrin at the highest tested ligand density. Fluorescence-activated cell sorting indicated that intracellular uptake plateaus at 1.9 mol% ligand density, reinforcing the literature observation that excessive binding can inhibit endocytosis. In an effort to transition to a biodegradable construct, PS-b-PEG was replaced with PLA-b-PEG. Experiments were conducted to determine the Flash NanoPrecipitation formulation that produces nanoparticles with properties desirable in a cancer nanotherapeutic, namely a diameter between 70 and 90 nm with a size distribution less than 0.2. Three parameters were varied: block copolymer-to-core ratio, solute concentration, and PLA block length. Based on experimental results, MODDE software generated a model to predict hydrodynamic diameter (R\(^{2}\) = 0.58) and size distribution (R\(^{2}\) = 0.81). The predicted optimal formulation was tested and yielded a nanoparticle with a diameter of 97 ± 16 nm and size distribution of 0.2 ± 0.03.en_US
dc.format.extent60 pagesen_US
dc.language.isoen_USen_US
dc.titleFabrication of Protein Scaffold-Nanoparticle Conjugates for Targeted Cancer Therapeuticsen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2014en_US
pu.departmentChemical and Biological Engineeringen_US
pu.pdf.coverpageSeniorThesisCoverPage-
Appears in Collections:Chemical and Biological Engineering, 1931-2020

Files in This Item:
File SizeFormat 
Edelstein_Jasmine_CBE 14_Thesis Final.pdf5.03 MBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.