Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp0170795b28c
Full metadata record
DC FieldValueLanguage
dc.contributorConstantin, Peter-
dc.contributor.advisorVicol, Vlad C.-
dc.contributor.authorWaldon, Harrison-
dc.date.accessioned2017-07-26T14:57:44Z-
dc.date.available2017-07-26T14:57:44Z-
dc.date.created2017-07-05-
dc.date.issued2017-7-5-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp0170795b28c-
dc.description.abstractIn this thesis, I investigate the long time dynamics of three equations arising in hydrodynamics: critical Burgers, critical SQG, and Navier-Stokes. To do so, I analyze the compact global atractors for each of these equations. I show that each atractor has finite fractal (Hausdorff) dimension. This dimension in turn gives a bound on the number of degrees of solutions’ long time behavior. Finally, using the results of [1], we attain a single exponential bound on the Lipschitz norm for solutions of forced critical SQG, improving the result of [8].en_US
dc.language.isoen_USen_US
dc.titleDegrees of Freedom for Long Time Dynamics of Forced Critical Burgers and SQG Equationen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2017en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributorid310090269-
pu.contributor.authorid960889769-
pu.contributor.advisorid960821635-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File SizeFormat 
hwaldon.pdf434.27 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.