Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp016682x689p
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorZhang, Shouwu-
dc.contributor.authorQiu, Congling-
dc.contributor.otherMathematics Department-
dc.date.accessioned2020-07-13T03:33:05Z-
dc.date.available2020-07-13T03:33:05Z-
dc.date.issued2020-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp016682x689p-
dc.description.abstractWe prove the Gross-Zagier-Zhang formula over global function fields of arbitrary characteristics. It is an explicit formula which relates the Néron-Tate heights of CM points on abelian varieties and central derivatives of associated quadratic base change L-functions. Our proof is based on an arithmetic variant of a relative trace identity of Jacquet. This approach is proposed by W. Zhang. As a byproduct, we prove the Waldspurger formula over global function fields-
dc.language.isoen-
dc.publisherPrinceton, NJ : Princeton University-
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog: <a href=http://catalog.princeton.edu> catalog.princeton.edu </a>-
dc.subject.classificationMathematics-
dc.titleThe Gross-Zagier-Zhang formula over function fields-
dc.typeAcademic dissertations (Ph.D.)-
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Qiu_princeton_0181D_13372.pdf1.51 MBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.