Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp016682x638x
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorShkolnikov, Mykhaylo-
dc.contributor.authorYun, Sean-
dc.date.accessioned2016-06-24T16:18:28Z-
dc.date.available2016-06-24T16:18:28Z-
dc.date.created2016-04-12-
dc.date.issued2016-06-24-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp016682x638x-
dc.description.abstractThis thesis aims to explore the stochastic differential equation that satisfies the McKean-Vlasov process, in which the coefficients depend on the distribution of the solution itself. Because the McKean-Vlasov equation does not have a closed-form ana- lytical solution, we seek to develop numerical methods that would provide approxima- tions of the McKean-Vlasov process. By looking at autonomous stochastic differen- tial equations with established numerical methods, specifically the Euler-Maruyama method and Milstein's method, we look into developing analogous methods for the McKean-Vlasov process.en_US
dc.format.extent41 pages*
dc.language.isoen_USen_US
dc.titleNumerical Methods for the McKean-Vlasov Equationen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2016en_US
pu.departmentOperations Research and Financial Engineeringen_US
pu.pdf.coverpageSeniorThesisCoverPage-
Appears in Collections:Operations Research and Financial Engineering, 2000-2020

Files in This Item:
File SizeFormat 
YunSean_Final_Thesis.pdf442.77 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.