Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp012227mp79j
Title: First Principles Evaluation of the Photocatalytic Properties of Cuprous Oxide
Authors: Bendavid, Leah Isseroff
Advisors: Carter, Emily A.
Contributors: Chemical and Biological Engineering Department
Keywords: Cuprous Oxide
Density Functional Theory
Photocatalysis
Quantum mechanics
Subjects: Chemical engineering
Chemistry
Materials Science
Issue Date: 2013
Publisher: Princeton, NJ : Princeton University
Abstract: Cuprous oxide (Cu2O) is a semiconductor attractive for use as a photocatalyst in renewable fuel production, but has thus far exhibited low efficiencies in solar energy technologies. A thorough understanding of its photocatalytically relevant properties is needed to develop improved cuprous oxide-based photocatalysts. This dissertation uses first principles calculations founded in quantum mechanics to study the physical, optical, electronic, and chemical properties of cuprous oxide and to optimize its performance in solar energy applications. The key properties that affect efficiency include electronic excitations, the band gap, band edge positions, charge transport, defect trap states, catalyst stability, and surface chemistry. The band gap of Cu2O, which defines the efficiency of solar energy absorption, is first calculated with hybrid density functional theory (DFT) followed by a single GW perturbation. We also design methods to calculate optical excitations using embedded correlated wavefunction theory. The low-index surfaces are characterized using DFT+U, where we identify the (111) surface as the most stable. This surface is employed in the derivation of the band edges of Cu2O, which demonstrate that Cu2O can provide the thermodynamic overpotential needed to drive water splitting and the reduction of CO2 to methanol. We also identify the adsorption mechanisms of weakly physisorbed CO2 and the more strongly adsorbed H2O on the Cu2O(111) surface. Effective charge transport is needed so that photoexcited carriers can reach the surface active sites prior to recombination. We study electron and hole transport in Cu2O using the small polaron model, and show that its localized description is inappropriate for carrier transport, which is better modeled using band theory. We then use an approach founded in band theory to analyze the cause of intrinsic trap states, which promote carrier recombination. We conclude that doping with Li can prevent trap state formation and thus reduce recombination. Finally, because Cu2O is known to be photocathodically unstable, we consider a suggested method of stabilizing Cu2O via deposition on a ZnO substrate. We evaluate the properties of the Cu2O(111)/ZnO(101 ̅0) interface, revealing that it is weakly bound. The ZnO substrate reduces the band gap of the Cu¬2O coating.
URI: http://arks.princeton.edu/ark:/88435/dsp012227mp79j
Alternate format: The Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog
Type of Material: Academic dissertations (Ph.D.)
Language: en
Appears in Collections:Chemical and Biological Engineering

Files in This Item:
File Description SizeFormat 
Bendavid_princeton_0181D_10778.pdf5.57 MBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.