Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp010c483n01s
Full metadata record
DC FieldValueLanguage
dc.contributorTaylor, Richard L.-
dc.contributor.advisorMorel, Sophie M.-
dc.contributor.authorLi, Daniel-
dc.date.accessioned2017-07-26T16:17:14Z-
dc.date.available2017-07-26T16:17:14Z-
dc.date.created2017-06-03-
dc.date.issued2017-6-3-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp010c483n01s-
dc.description.abstractLet \(F\) is a local field of characteristic \(p\). Inspired by work of Scholze, we construct a map \(\pi\mapsto\sigma(\pi)\) from irreducible smooth representations of \(\mathrm{GL}_n(F)\) to \(n\)-dimensional Weil representations of \(F\). We prove that this map uniquely satisfies a purely local compatibility condition on traces of a test function \(f_{\tau,h}\), and we also prove that this map is compatible with parabolically inducing tensor products. It is expected that \(\pi\mapsto\sigma(\pi)\) equals the local Langlands correspondence for \(\mathrm{GL}_n\) over \(F\), up to Frobenius semisimplification.en_US
dc.language.isoen_USen_US
dc.titleA Scholzian Approach to the Local Langlands Correspondence for \(\mathrm{GL}_n\) over function fieldsen_US
dc.typePrinceton University Senior Theses-
pu.date.classyear2017en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage-
pu.contributorid000079328-
pu.contributor.authorid960883307-
pu.contributor.advisorid960769599-
Appears in Collections:Mathematics, 1934-2020

Files in This Item:
File SizeFormat 
senior_thesis.pdf749.81 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.