Please use this identifier to cite or link to this item:
http://arks.princeton.edu/ark:/88435/dsp010c483n01s
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor | Taylor, Richard L. | - |
dc.contributor.advisor | Morel, Sophie M. | - |
dc.contributor.author | Li, Daniel | - |
dc.date.accessioned | 2017-07-26T16:17:14Z | - |
dc.date.available | 2017-07-26T16:17:14Z | - |
dc.date.created | 2017-06-03 | - |
dc.date.issued | 2017-6-3 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/dsp010c483n01s | - |
dc.description.abstract | Let \(F\) is a local field of characteristic \(p\). Inspired by work of Scholze, we construct a map \(\pi\mapsto\sigma(\pi)\) from irreducible smooth representations of \(\mathrm{GL}_n(F)\) to \(n\)-dimensional Weil representations of \(F\). We prove that this map uniquely satisfies a purely local compatibility condition on traces of a test function \(f_{\tau,h}\), and we also prove that this map is compatible with parabolically inducing tensor products. It is expected that \(\pi\mapsto\sigma(\pi)\) equals the local Langlands correspondence for \(\mathrm{GL}_n\) over \(F\), up to Frobenius semisimplification. | en_US |
dc.language.iso | en_US | en_US |
dc.title | A Scholzian Approach to the Local Langlands Correspondence for \(\mathrm{GL}_n\) over function fields | en_US |
dc.type | Princeton University Senior Theses | - |
pu.date.classyear | 2017 | en_US |
pu.department | Mathematics | en_US |
pu.pdf.coverpage | SeniorThesisCoverPage | - |
pu.contributorid | 000079328 | - |
pu.contributor.authorid | 960883307 | - |
pu.contributor.advisorid | 960769599 | - |
Appears in Collections: | Mathematics, 1934-2020 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
senior_thesis.pdf | 749.81 kB | Adobe PDF | Request a copy |
Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.